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Abstract

We suggest a new method of approximating temporary equilibria in heterogeneous
agent models. Our approach offers a significant speedup without a notable drop in
accuracy relative to established methods. We demonstrate the effectiveness of our
procedure by applying it to a model with heterogeneous boundedly rational agents,
and comparing its performance to that of alternative methods.
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1 Introduction

Heterogeneous agent models based on Huggett (1993), Aiyagari (1994), and Krusell et al.
(1998) have become standard in macroeconomics. A major challenge with such models is
their reliance on computational methods for finding equilibrium solutions and simulating
recursive dynamic equilibria, which can be time-consuming and costly (Algan et al., 2014).

When simulating heterogeneous agent (HA) economies, one must solve for the
temporary equilibrium (TE) given the realization of state variables at each period of
the simulation. In a TE, agents’ decisions and prices are simultaneously pinned down
by market clearing conditions – in turn, these outcomes determine aggregate dynamics.
Practically, this involves finding agent-level policy rules as a function of individual and
aggregate states, along with prices, then solving for equilibrium prices by applying a
sequential root solver to a set of market clearing conditions that depend on the aggregate
of individual policy rules as a function of aggregate states and prices (Bakota, 2022). As
described in Den Haan et al. (2010), the repeated aggregation of individual policy rules
during the computation of TE in a simulation may take a long time, even while using
standard projection methods outlined in Judd (1992) and Judd (1996) to approximate
individual policy functions.

We suggest a fast new approach to approximating TE in HA models that builds on
existing projection methods. The key is to store the components of the aggregation of
individual policy rule approximations that are independent of prices and aggregate states,
such that each iteration of the root solver performs a minimal number of operations to
compute aggregate outcomes. We find that our approach significantly outperforms existing
aggregation methods, especially in cases with high-dimensional idiosyncratic state spaces,
while avoiding notable losses in accuracy.

In Section 2, we build up to a formulation of our aggregation method by (1)
generalizing the TE of an HA model; (2) mapping a specific example of a high-dimensional
boundedly rational HA model to the general framework; and (3) describing two standard
computational methods for approximating TE, and proposing a faster approach. In Section
3, we apply all three methods to the example model and compare their execution times and
accuracy. The final section concludes the paper.
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2 Methodology

Suppose we want to find the TE of an HA economy with idiosyncratic and aggregate states
at some given point in time. We have a set of demand functions x̃(z,P;Z), which depend
on individual states z with distribution Ω, prices P, and an aggregate state Z. The aggregate
state follows a given law of motion Z′ = G(Z,E), where Z′ denotes the realization of
the aggregate state in the next period, and E denotes a vector of aggregate shocks. Our
objective is to find the set of market-clearing prices P∗ given Z, such that

X̃(P∗;Z)≡
∫

x̃(z,P∗;Z)dΩ(z) = X(P∗;Z) , (1)

where X̃ and X represent aggregate demand and supply, respectively.s Next, we put this
general framework in perspective by constructing a specific example of a Krussell-Smith
model with endogenous labor supply and boundedly rational agents, as presented in Evans
et al. (2023), in which agents have heterogeneous beliefs in addition to idiosyncratic
productivity. We use this model as a benchmark to compare the execution times of
competing TE approximation methodologies.

2.1 Model

Let time be discrete. The economy is populated by a continuum of agents, such that a given
agent is endowed with a unit of labor per period and derives utility from consumption c

and leisure l according to the instantaneous utility function u(c, l). Each agent has a unique
effective unit of labor for each unit of nominal labor supplied, and receives a corresponding
wage that can be separated into the following two components: (1) a common aggregate
component w; and (2) an idiosyncratic efficiency component ε that is i.i.d. across the
population. We assume {ε} to be a Markov process with time-invariant transition function
Π. In each period, an agent can trade one-period claims to capital for net return r, limited
by the exogenous borrowing constraint a. Goods and factor markets are assumed to be
competitive.

In period t, an agent holds claims a, experiences idiosyncratic efficiency ε , and faces
factor prices rt and wt . Additionally, an agent has a vector of beliefs, ψ ∈ Rn , which
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comprise of the coefficients of the forecasting model used to form expectations of next
period’s shadow price λt+1, where

λt(a,ε,ψ)≡ (1+ rt)uc(ct(a,ε,ψ), lt(a,ε,ψ)) . (2)

All agents observe some common vector of aggregates Xt ∈ Rn, and condition their
individual forecasts of λt+1 at time t, λ e

t , on these aggregates. Each agent forms a forecast
using the following perceived law of motion (PLM):

logλ
e
t = logλ

e
+ ⟨ψ,Xt−1⟩ , (3)

where ⟨·, ·⟩ is the standard inner product on Rn, and λ
e

is a time-t forecast of λt+1 in a
corresponding stationary recursive equilibrium without any aggregate risk. We may express

λ
e
(a′,ε) =

∫
λ (a′,ε ′)Π(ε,dε

′) , (4)

where λ (a,ε) = (1+ r)uc(c(a,ε), l(a,ε)), such that c, l, and r represent the stationary
equilibrium levels of consumption, labor, and the capital rate of return, respectively.1

Given factor prices rt and wt , each agent uses their forecast rule to determine their
period-t decisions – ct(a,ε,ψ), lt(a,ε,ψ), and at(a,ε,ψ) – which satisfy the following
conditions:

uc(ct(a,ε,ψ), lt(a,ε,ψ))≥ β λ
e
t (at(a,ε,ψ),ε,ψ) (5)

and at(a,ε,ψ)≥ a, with c.s.

ul(ct(a,ε,ψ), lt(a,ε,ψ)) = uc(ct(a,ε,ψ), lt(a,ε,ψ))wt (6)

at(a,ε,ψ) = (1+ rt)a+wt · ε · (1− lt(a,ε,ψ))− ct(a,ε,ψ) . (7)

The representative firm rents capital kt at real rental rate rt + δ , hires effective labor

1Essentially, we assume that agents’ forecasts of the following period’s shadow price consists of two
components: (1) a rational forecast of next period’s shadow price in a corresponding stationary equilibrium
without aggregate risk; and (2) a boundedly rational forecast of the expected deviation of next period’s shadow
price from its stationary level attributed to variation in aggregate risk, as predicted by variation in the observed
aggregate variables. For an in-depth discussion of this PLM and how agents update their beliefs, refer to
Evans and McGough (2021) and Evans et al. (2023). For the purposes of this paper – to approximate a TE –
we treat the distribution of ψ over the population of agents as given.
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nt at real wage wt , and produces output under perfect competition using CRTS technology
θ f (k,n), where δ is the capital depreciation rate. We take {θt} to be a stationary process
that affects total factor productivity, with dynamics given by θt+1 = νtθ

ρ

t , |ρ| < 1, and
{νt} is iid having log-normal distribution. There are no capital installation costs. Profit
maximization behavior by the firm implies that factors earn their marginal products:

wt = θt fn(kt ,nt) and rt +δ = θt fk(kt ,nt) . (8)

Given agent-specific states and beliefs (a,ε,ψ), and observable aggregates Xt , the
conditions (5)–(7) determine agents’ decision schedules in terms of prices (rt ,wt).
The realized values of prices and other endogenous aggregates are determined by
market clearing, i.e. TE. Mechanically, this determination requires tracking the
evolving distribution of agent-specific states and agent-specific beliefs. Let µt be the
contemporaneous distribution of agent-states and beliefs. Then TE imposes that rt =

θt fk(kt ,nt)−δ and wt = θt fn(kt ,nt), where kt and nt are determined by the market clearing
conditions

kt =
∫

a ·µt(da,dε,dψ) and nt =
∫
(1− lt(a,ε,ψ))µt(da,dε,dψ) , (9)

and θt is the realized TFP shock. The nt in the above equation depends on the policy rules
lt(a,ε,ψ), which, in turn, depend implicitly on current factor prices (rt ,wt). All must be
jointly determined in the TE as solutions to a system of non-linear equations.

We now map this particular model to the general class of TE described at the beginning
of this Section. For a given agent, the set of individual states is z = (a,ε,ψ) with some
distribution µt , the set of prices faced by all agents is P = (rt ,wt), and the aggregate state
is Z = (µt ,θt ,Xt−1) with transition dynamics governed by Z′ = H(Z,νt+1). Therefore, an
agent’s set of demand functions is captured by x̃(z,P,Z) = (ct(z,P,Z), lt(z,P,Z),at(z,P,Z)).
We may therefore express the market clearing conditions presented in Eq. (1) by

kt =
∫

a ·µt(dz) and nt =
∫
(1− lt(z,P,Z))µt(dz) . (10)

In our application, beliefs ψ are fixed, hence the aggregate observables Xt−1 have no
impact on the equilibrium outcome. Furthermore, we fix the TFP shock with θt = 1, so
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that it can be disregarded. Finally, we initialize the distribution µt of individual states
z = (a,ε,ψ) by fixing it to some µ̂ .

2.2 Approximation Methods

We present three distinct approaches to approximating TE in HA models, and apply all
three to our example model. We find that our novel method significantly outperforms the
rest in terms of execution time, without suffering from a notable loss in accuracy.

Method #1 (Naive Global Approximation): This is the most direct of all methods. Let
Ω be approximated with N points {zi}i∈NN with corresponding weights {ωi}i∈NN . The
approximation for the demand schedule X̃(P;Z)∈RJ for a given P and Z may be expressed
as the following weighted sum:

X̂ j(P;Z)≡ ∑
i

ωi x̃ j(zi,P;Z) , (11)

where x̃ is derived individually for each (zi,P;Z) tuple, and j = 1, . . . ,J is an index for the
set of goods in the economy. Repeating the above approximation for all J goods yields
X̃(P;Z), which can then be used to solve for the equilibrium vector of prices P∗ using the
market clearing condition in Eq. (1).

The benefit of this approach is its precision – all of the policy functions are solved
directly, therefore X̂ and X̃ are likely to be close. On the other hand, solving the policy
functions N times for a given P can be computationally taxing, especially if N is large. If
an M number of steps is required for a root solver to converge to an approximation of P∗,
then each x̃ j needs to be recomputed a total of M ·N number of times.

In our application, for a given wage level w and distribution µ̂ of individual states
(a,ε,ψ), we analytically solve for the level of capital k and return on capital r. Using the
above objects, we then solve for the quantity of labor supplied individually by each agent,
1− li, according to conditions (5)–(7). Averaging these individual labor supply decisions
across the set of all agents, as in Eq. (11), yields the aggregate labor supply nt , as shown in
Eq (9).
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Method #2 (Interpolated Global Approximation): This method adds another layer of
approximation to the first. Suppose that x̃ is approximated by x̂ via projection, such that the
demand for the j-th good is represented by

x̂ j(z,P;Z) = ∑
k

∑
l

∑
m

c j
kl Φ

z
k(z)Φ

P
l (P)Φ

Z
m(Z) , (12)

where ΦP
l , Φ

z
k and ΦZ

m are the basis functions that each depend on prices, idiosyncratic
states, and the aggregate state, respectively. The approximation for the demand schedule
X̃(P;Z) may be expressed as the following weighted sum:

X̂ j(P;Z)≡ ∑
i

ωi x̂ j(zi,P) , (13)

where zi and ωi are defined as before. Once again, Eq. (13) may be used to solve for P∗ in
Eq. (1).

The attractiveness of this approach lies in that it requires the policy function for the j-th
good to be approximated only once, after which it is inputted into Eq. (13) to compute
the sum. However, given a large N, the sum in Eq. (13) may still take a substantial
amount of time to compute. This is especially true if the vector of idiosyncratic states z

is high-dimensional, in which case each instance of a pre-computed x̂ may take a long time
to execute – causing Method 1 to outpace Method 2.2 Furthermore, this method likely
provides a less accurate solution for X̃ relative to Method 1, due to the additional layer of
approximation.

In applying this method to our example model, we essentially repeat the same steps as
with Method 1. However, we first approximate the labor supply policy function of each
agent i by interpolating them over grids of the idiosyncratic states (a,ε,ψ) and prices (r,w)
centered around their stationary recursive equilibrium values. After solving for k and r, as
before, we solve for the quantity of labor supplied individually by each agent – this time by
inputting their corresponding idiosyncratic states. Averaging these individual labor supply
decisions across the set of all agents gives us the aggregate labor supply nt .

Method #3 (Fast Approximation): Finally, we present our new method of approximating
TE, which is based on an algebraic manipulation of Method 2. Notice that substituting Eq.

2We demonstrate this in our application.
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(12) into Eq. (13) yields

X̂ j(P;Z) = ∑
i

ωi ∑
l

∑
k

∑
m

c j
kl Φ

z
k(z)Φ

P
l (P)Φ

Z
m(Z) , (14)

which can be rearranged by distributing ωi, switching the order of summation, and factoring
ΦP

l in the following manner:

X̂ j(P;Z) = ∑
l

Φ
P
l (P)∑

i
ωi ∑

k
∑
m

c j
klΦ

z
k(z)Φ

Z
m(Z) . (15)

Finally, letting C j
l (Z)≡ ∑i ωi ∑k ∑m c j

kl Φ
z
k(z)ΦZ

m(Z) allows us to express Eq. (15) as

X̂ j(P;Z) = ∑
l

C j
l (Z)Φ

P
l (P) . (16)

With this formulation of X̂ , since C j
l is independent of P, it is sufficient to compute C j

l

once before initializing the root solver to find P∗. This approach strictly dominates Method
2 by relying on the same projections while being significantly faster – it also likely outpaces
Method 1 even when z is high-dimensional, as is shown in Section 3.

It is worth mentioning that the execution speed of a TE solver becomes crucial in
practice when the dynamic recursive equilibrium of a heterogeneous agent economy is
being simulated over some period of time – in other words, when the TE solver is used
repeatedly (Bakota, 2022). For such applications, the speedup offered by our method
is particularly attractive. The case becomes even stronger in the context of stationary
recursive equilibria, in which the idiosyncratic distribution Ω is time-invariant – C j

l can
be computed at the start of a simulation and used all throughout.

In our application, the aggregate state Z is degenerate due to reasons outlined at the end
of Section 2.1, therefore it can be disregarded. After solving for k and r, we obtain Cl for
labor by interpolating over grids of the idiosyncratic states (a,ε,ψ), and then use Eq. (15)
to directly approximate nt as a function of w. Notice that we no longer need to average over
individual labor supply decisions with this approach.
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3 Application

We compare the computational performance of the three TE solution methods across three
dimensions: (1) the execution time of the aggregation procedure – in other words, the
time it takes to find the sum of individual policy rules given all necessary inputs; (2) the
execution time of the multidimensional mapping characterizing the TE, which needs to be
computed at each step of the nonlinear solver; (3) the execution time of the nonlinear
solver that approximates the set of equilibrium prices. We generate samples of these
execution times and present corresponding summary statistics in Table 1. Notice that our
method (Method 3) offers significant speedups across all of the performance dimensions.
Furthermore, notice that Method 2 is impractically slow compared to the other methods in
the given high-dimensional setting.

In addition to an execution speed comparison, we compare the accuracy with which our
method estimates the aggregate labor supply schedule. In Fig. 1, we plot the percentage
deviation of the labor supply schedule approximated using Methods 2 and 33 from that
obtained using Method 1 over a large interval surrounding the steady state wage level. We
find that our approach offers accuracy similar to Method 1, since the two labor supply
schedules are practically identical.

Method #1 Method #2 Method #3

Aggregation 0.032795726 42.00302928 3.98e-06
(0.023769756) (39.43680994) (3.20e-06)

Temporary Eq. Mapping 0.06114025 43.34148712 3.99e-06
(0.050119322) (43.22936301) (3.44e-06)

Nonlinear Solver 0.681620303 486.2593348 0.000336456
(0.65654354) (439.0028829) (0.000322401)

Sample Size 1000 1000 1000

Table 1: Temporary equilibrium solution methods execution times. Note: Mean
execution time in seconds, the with minimum execution time in parentheses.

3Note that Methods 2 and 3 must yield the same approximation.
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Figure 1: The percentage deviation of aggregate labor supply as a function of
wage approximated using Method 3 from that obtained using Method 1. Note:
The steady state wage level is represented by the dashed vertical line.

4 Conclusion

We develop a new method of approximating temporary equilibria in heterogeneous agent
models by algebraically simplifying a conventional projection method. We compare the
performance of existing methods of approximating temporary equilibria with our method
by applying them to a model with heterogeneous boundedly rational agents presented in
Evans et al. (2023). We find that our method offers a significant speedup without a notable
drop in accuracy.
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